y=x的sinX次方的导数是x^x(cosxlnx十1/xsinⅹ)。微分是上式再乘dx。题目中的函数x^sinⅹ求导确实比较麻垣,有不少朋友学了不少时间的微积分可能还未搞清这个问题。这里要用到对数恆等式:a^log(a为底)N二N。因此x^x=elnx^sinx=e^sinxlnx,设U=sinXlnx,所以y的导数=e^U✘(cosxlnⅹ+sinx✘1/x)=x^x(cosxlnx十1/xsinⅹ)。

y= x的sin x次方的导数和微分

y= x的sin x次方等于e^(sinxlnx),故它的导数和微分分别为

y'=(cosxlnx+sinx/x)e^(sinxlnx)

dy=(cosxlnx+sinx/x)e^(sinxlnx)dx