等比数列已知sn求的通式

等比数列sn的通项公式是Sn=(a1(1-q^n))/1-q,等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。

等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式—复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期

等比数列已知sn求通式

等比数列sn的公式是:

Sn=n×a1(q=1)

Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)=a1(q^n-1)/(q-1)(q≠1)

(q为公比,n为项数)

等比数列通项公式:

an=a1×q^(n-1)

推广式:an=am×q^(n-m)

等比数列求和公式推导:

(1)Sn=a1+a2+a3+...+an(公比为q)

(2)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)

(3)Sn-q*Sn=a1-a(n+1)

(4)(1-q)Sn=a1-a1*q^n

(5)Sn=(a1-a1*q^n)/(1-q)

(6)Sn=(a1-an*q)/(1-q)

(7)Sn=a1(1-q^n)/(1-q)

(8)Sn=k*(1-q^n)~y=k*(1-a^x)